
Step by Step on How to Build a

Simple Laravel 10 Website

from Ground Zero

This article is dedicated to beginners finding it difficult to get started
with Laravel. Keep calm and follow through.

What is Laravel?

Laravel is an easy-to-use web framework that will help you create

extensible PHP-based websites and web applications at scale.

Pre-requisites

You need to be good at HTML, core PHP, and advanced PHP (still

possible to skip).

STEP 1: Download and Install

The obvious first step is for you to download and set up all the

necessary software that you would need for this course. The following

are the list of software you need to download and install on your

computer:

1. Node.js https://nodejs.org/en

2. Composer https://getcomposer.org/

3. wamp/xampp/lamp https://www.wampserver.com/en/ or htt

ps://www.apachefriends.org/

4. Text editor (preferably VS

Code) https://code.visualstudio.com/

Node.js

This would assist us in running some command lines.

Composer

According to their docs, Composer is a tool for dependency

management in PHP. It allows you to declare the libraries your project

depends on and it will manage (install/update) them for you.

WAMP/XAMPP/LAMP

You can use any of the above software, but not two or more at a time.

WampServer is a Web development platform on Windows that allows

you to create dynamic Web applications with Apache2, PHP, MySQL

https://nodejs.org/en
https://getcomposer.org/
https://www.wampserver.com/en/
https://www.apachefriends.org/
https://www.apachefriends.org/
https://code.visualstudio.com/

and MariaDB. WampServer automatically installs everything you need

to intuitively develop Web applications.

XAMPP is a short form for Cross-Platform, Apache, MySQL, PHP, and

Perl. XAMPP is a free and open-source cross-platform web server.

XAMPP is simply a local host or server that is used to test clients or

websites before publishing them to a remote web server. The XAMPP

server software on a local computer provides an appropriate

environment for testing MYSQL, PHP, Apache, and Perl projects.

LAMP stands for Linux, Apache, MySQL, and PHP. Together, they

provide a proven set of software for delivering high-performance web

applications.

VS Code

Visual Studio Code is a streamlined code editor with support for

development operations like debugging, task running, and version

control.

Final Note: Make sure you read about the software and their

functions before installing them. You can also go on YouTube to check

how to install each of the software.

Once you’re done installing the software listed above, you can then

proceed to step 2.

STEP 2: Environment Variables

On your Windows’ computer search box, type env, click on edit the

system environment variables, then select path in the system

variables box, click on edit.

1.

2.

3.

4.

Go to this path on your computer C:\wamp64\bin\php\php8.2.0

I am currently using php8.2.0, but yours might be different, if it is, it

doesn’t affect what we are about to do. Once you are able to locate this

path on your system, copy the path and add it as new in the dialog box

that popped up.

Check if your composer has also been added to the system variable, if

it’s not, add it too.

STEP 3: Check Versions

Launch your node.js, type php -v to get the version of php you’re

using. For composer, type composer -v. If the versions are not

returned, it’s probably that you did not install the software correctly or

they are not available in the system environment. When you check the

version of composer, you will see something like the image below:

STEP 4: Install Laravel

Launch your node.js command prompt, type the following commands:

$ composer create-project laravel/laravel simple-project

$ cd simple-project

$ php artisan serve

You should see something like after running php artisan serve

Quick Explanation:

The first command was to create a new laravel project called simple-

project

The second command was to move into a new directory (folder)

named simple-project. cd means change directory.

The third command php artisan serve is used to start up the server.

Copy the link and paste it on your browser’s search box. The default

port is 8000, but if you decide to use another port, you should rewrite

your command like this:

$ php artisan serve -–port=8001

Your default Laravel page should show like this

STEP 5: SETUP DATABASE

Launch your server (WAMP for windows), start all services. On your

browser, type localhost/phpmyadmin. Create a new

database, simple_project.

In your simple-project directory, open .env file, update

the DB_DATABASE value with the name of the database you just

created.

Open the database.php file in the config directory, since we are using

MySQL, update the engine’s value. engine=Innodb

STEP 6: INSTALL BREEZE FOR AUTHENTICATION

Laravel Breeze is a minimal, simple implementation of all of Laravel’s

authentication features, including login, registration, password reset,

email verification, and password confirmation. You may check the

documentation for more information.

To stop your server from running, press CTRL + C

$ composer require laravel/breeze — — dev

$ php artisan breeze:install blade

$ php artisan migrate

To start up your server again, run $ php artisan serve

You should see Login and Register at the top right of your page.

Quick Explanation:

The first command helps to install the Laravel breeze package using

composer. The second command publishes all of its codes (like

authentication, routes, views, controllers, and other resources) to your

application. We need to set up our data before we run the third

command. The third command automatically publishes all schemas to

the database. Once this is done, you can check your database to see the

new tables added to your database.

STEP 7: Update Users Schema

In the app/database/migration directory, select the file that

contains “create_users_table” as its file name. The file should look

like this:

<?php

use Illuminate\Database\Migrations\Migration;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Support\Facades\Schema;

return new class extends Migration

{

 /**

 * Run the migrations.

 */

 public function up(): void

 {

 Schema::create('users', function (Blueprint $table) {

 $table->id();

 $table->string('name');

 $table->string('email')->unique();

 $table->timestamp('email_verified_at')->nullable();

 $table->string('password');

 $table->rememberToken();

 $table->timestamps();

 });

 }

 /**

 * Reverse the migrations.

 */

 public function down(): void

 {

 Schema::dropIfExists('users');

 }

};

Let’s update the schema with phone, role, and status fields.

 Schema::create('users', function (Blueprint $table) {

 $table->id();

 $table->string('name');

 $table->string('email')->unique();

 $table->timestamp('email_verified_at')->nullable();

 $table->string('password');

 $table->string('phone')->nullable();

 $table->enum('role', ['admin', 'user'])->default('user');

 $table->enum('status', ['active',

'inactive'])->default('active');

 $table->rememberToken();

 $table->timestamps();

 });

Now, that we are done updating our Users schema, we can now create

data for the users table

STEP 8: CREATE DEMO DATA (SEEDERS)

Let’s create demo data before we migrate all our tables to the database.

Run

$ php artisan make:seeder UsersTableSeeder

This command will create UsersTableSeeder.php file

in app/database/seeders directory. We will create two records: an

admin record and a user record.

<?php

namespace Database\Seeders;

use Illuminate\Database\Console\Seeds\WithoutModelEvents;

use Illuminate\Database\Seeder;

use Illuminate\Support\Facades\{Hash, DB};

class UsersTableSeeder extends Seeder

{

 /**

 * Run the database seeds.

 */

 public function run(): void

 {

 //Admin

 DB::table('users')->insert([

 [

 'name' => 'Lagbaja Tamedo',

 'email' => 'lagbaja@gmail.com',

 'password' => Hash::make(12345),

 'role' => 'admin',

 'status' => 'active'

],

 //Users

 [

 'name' => 'John Doe',

 'email' => 'doe@gmail.com',

 'password' => Hash::make(12345),

 'role' => 'user',

 'status' => 'active'

]

]);

 }

}

We are done creating demo data in the UsersTableSeeder.php file.

Let’s add more data to the Users table by creating fake random data,

that’s our next step.

STEP 9: CREATE DEMO DATA (FAKE)

Let’s update our UserFactory.php file

in app.database/factories directory as thus:

<?php

namespace Database\Factories;

use Illuminate\Database\Eloquent\Factories\Factory;

use Illuminate\Support\Str;

/**

 * @extends \Illuminate\Database\Eloquent\Factories\Factory<\App\Models\User>

 */

class UserFactory extends Factory

{

 /**

 * Define the model's default state.

 *

 * @return array<string, mixed>

 */

 public function definition(): array

 {

 return [

 'name' => fake()->name(),

 'email' => fake()->unique()->safeEmail(),

 'email_verified_at' => now(),

 'role' => fake()->randomElement(['admin', 'user']),

 'status' => fake()->randomElement(['active', 'inactive']),

 'phone' => fake()->phoneNumber(),

 'password' =>

'$2y$10$92IXUNpkjO0rOQ5byMi.Ye4oKoEa3Ro9llC/.og/at2.uheWG/igi', // password

 'remember_token' => Str::random(10),

];

 }

 /**

 * Indicate that the model's email address should be unverified.

 */

 public function unverified(): static

 {

 return $this->state(fn (array $attributes) => [

 'email_verified_at' => null,

]);

 }

}

In the DatabaseSeeder.php file in the database directory, we need

to specify the number of fake data we want. The code below should

throw more light to that.

<?php

namespace Database\Seeders;

// use Illuminate\Database\Console\Seeds\WithoutModelEvents;

use Illuminate\Database\Seeder;

class DatabaseSeeder extends Seeder

{

 /**

 * Seed the application's database.

 */

 public function run(): void

 {

 $this->call(UsersTableSeeder::class);

 \App\Models\User::factory(2)->create();

 }

}

In the above code, we decided to add 2 records. If we want more data,

change the number in the factory() method.

Run this command $ php artisan migrate:fresh — seed

This command will drop all tables (if there is any) and migrate them

afresh along with the demo data we created. Check your phpmyadmin

interface, you should see the following:

Database Tables

user table

STEP 10: PLAY AROUND THE APP

You can try to register a new user or login with an existing user in the

database. To login, using one of the demo data we created:

Email: lagbaja@gmail.com

Password: 12345

You should be able to login with the above information

mailto:lagbaja@gmail.com

STEP 11: REDIRECTING UNAUTHENTICATED USER

Logout of the app. Try visiting the dashboard without login in. Copy

this link http://localhost:8000/profile and paste it in the URL search

bar of your browser, you would be redirected to the login page, because

you’re not authenticated (logged in). If you want to change where an

unauthenticated user should be redirected to, go to this

file app/Http/Middleware/Authenticate.php

 protected function redirectTo(Request $request): ?string

 {

 return $request->expectsJson() ? null : route('login');

 }

If you want the unauthenticated user to be redirected to the register

page, change the “login” to “register”

STEP 12: USER BASED DIRECTORY

You can change the user’s directory after logging in based on the role of

the user (user or admin). To do this, go to this file

app/http/controllers/auth/AuthenticatedSessionController.php and

update it as it’s been done below.

 public function store(LoginRequest $request): RedirectResponse

 {

 $request->authenticate();

 $request->session()->regenerate();

http://localhost:8000/profile

 switch ($request->user()->role) {

 case 'admin':

 $url = "/profile";

 break;

 case 'user':

 $url = "/dashboard";

 break;

 default:

 $url = "";

 break;

 }

 return redirect()->intended($url);

 }

STEP 13: CHANGE DIRECTORY AFTER LOGOUT

When you log out, you are automatically redirected to the login page.

But if you decide to redirect it to another page, go to this file,

app/http/controllers/auth/AuthenticatedSessionController.php. In the

destroy() method, edit the redirect(‘/’)method.

public function destroy(Request $request): RedirectResponse

 {

 Auth::guard('web')->logout();

 $request->session()->invalidate();

 $request->session()->regenerateToken();

 return redirect('/');

 }

To redirect to the register page, you should do this

 public function destroy(Request $request): RedirectResponse

 {

 Auth::guard('web')->logout();

 $request->session()->invalidate();

 $request->session()->regenerateToken();

 return redirect('/register');

 }

STEP 14: ROLES AND PERMISSIONS

We need to create roles and permissions for our users, if we want to

limit access that all users can have on an application. In our users

table, we have two roles: user and admin, though we can have more, if

we want. Instead of going the long way doing all on our own, we can

simply make use of a package called spatie. This package allows us to

manage user roles and permissions in the database. To get started, we

need to run some commands. Before we run the commands, let’s go to

this file app/Models/User.php and add HasRoles to the User class

like this

use HasApiTokens, HasFactory, Notifiable, HasRoles;

$ composer require spatie/laravel-permission

$ php artisan vendor:publish —

provider=”Spatie\Permission\PermissionServiceProvider”

You should clear your cache, if you have been caching your

configuration locally. Simply run:

$ php artisan optimize:clear

Add the following to the App/Http/Kernel.php file

‘role’ =>

\Spatie\Permission\Middlewares\RoleMiddleware::class,

‘permission’ =>

\Spatie\Permission\Middlewares\PermissionMiddleware::cl

ass,

‘role_or_permission’ =>

\Spatie\Permission\Middlewares\RoleOrPermissionMiddle

ware::class,

So, the file looks like this

 protected $middlewareAliases = [

 'auth' => \App\Http\Middleware\Authenticate::class,

 'auth.basic' =>

\Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

 'auth.session' =>

\Illuminate\Session\Middleware\AuthenticateSession::class,

 'cache.headers' =>

\Illuminate\Http\Middleware\SetCacheHeaders::class,

 'can' => \Illuminate\Auth\Middleware\Authorize::class,

 'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

 'password.confirm' =>

\Illuminate\Auth\Middleware\RequirePassword::class,

 'precognitive' =>

\Illuminate\Foundation\Http\Middleware\HandlePrecognitiveRequests::class,

 'signed' => \App\Http\Middleware\ValidateSignature::class,

 'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::class,

 'verified' =>

\Illuminate\Auth\Middleware\EnsureEmailIsVerified::class,

 'role' => \Spatie\Permission\Middlewares\RoleMiddleware::class,

 'permission' =>

\Spatie\Permission\Middlewares\PermissionMiddleware::class,

 'role_or_permission' =>

\Spatie\Permission\Middlewares\RoleOrPermissionMiddleware::class,

];

Lastly, run $ php artisan migrate

Your database should be updated with new tables.

This is great! We have come a long way. Relax for a few minutes before

you continue.

Our next goal is to apply the roles and permissions on the user

files and profile files.

For better understanding of what we will be doing next, let’s

understand how route, view and controller work together.

STEP 15: ROUTE/VIEW/CONTROLLER

View: The location of the view files can always be found

in app/resources/views directory. This is where all the files you

want to display on your browser reside. You cannot view any of these

files without configuring the corresponding routes.

Routes: The location of the routes configuration can be found

in app/routes/web.php file. This is where a page’s path is defined

and the name of the route. A corresponding controller class can also be

attached to the route, so also middlewares.

Below is an example of a route without a controller

Route::get('/', function () {

 return view('welcome');

});

get: This is the method for the route. There are others like post, patch,

delete etc.

‘/’: That’s the path to go to in order to view the welcome page. Other

paths could be ‘/login’ or ‘/register’ or depending on how you want

to name your path

view(‘welcome’): This points to the welcome.blade.php file in the

view folder. Once the path is visited, the view would load the content in

the welcome.blade.php file to the browser.

If all these work well, what’s then the use of controllers? We use

controllers to handle most of our request logics and for code

organization. Instead of performing most of our response or request

logics in the web.php file, it’s better we do them in our controllers.

Route::get('/users', [UsersController::class, 'show'])->name('users.show);

The above code shows the relationships among the route, views and

controllers.

The method used is get, the path is users, the controller

is UsersController, and the method where the view was called is in

the show method. The route is also given a name, which

is user.show.

Below is how the view is being called in the show() method of the

UserController class

 public function show(): View

 {

 return view('users.show');

 }

This is just the basics. For more information, kindly check Laravel’s

official documentation.

STEP 16: ADD DATA TO THE PERMISSION’S TABLE

Let’s create a seeder file for our permission.

$ php artisan make:seeder PermissionTableSeeder

The database directory gets updated with a new file,

PermissionTableSeeder. Then, we update the file as thus:

 public function run(): void

 {

 //

 $permissions = [

 'role-list',

 'role-create',

 'role-edit',

 'role-delete',

 'user-list',

 'user-create',

 'user-edit',

 'user-delete'

];

 foreach ($permissions as $permission) {

 Permission::create(['name' => $permission]);

 }

 }

This is to create a default list of permissions. As we did before, by

updating the DatabaseSeeder.php file for the users, we also need to do

the same for Permissions.

// use Illuminate\Database\Console\Seeds\WithoutModelEvents;

use Illuminate\Database\Seeder;

class DatabaseSeeder extends Seeder

{

 /**

 * Seed the application's database.

 */

 public function run(): void

 {

 $this->call([UsersTableSeeder::class, PermissionTableSeeder::class]);

 \App\Models\User::factory(2)->create();

 }

}

Take note, that the argument in the call() method has been changed to

an array, so as to accommodate more seeders.

Let’s migrate the permissions data to the database.

$ php artisan db:seed — class=PermissionTableSeeder

The above command includes —

class=PermissionTableSeeder. This is to enable the migration of

the PermissionTableSeeder only without affecting others.

STEP 17: USER RESOURCE

Let’s create all the needed routes and controller for the user. To get

this done easily, we should run the command below:

$ php artisan make:controller UserController — resource

This command would automatically create a new UserController.php

file in the controller directory with some predefined methods.

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

class UserController extends Controller

{

 /**

 * Display a listing of the resource.

 */

 public function index()

 {

 //

 return "Index";

 }

 /**

 * Show the form for creating a new resource.

 */

 public function create()

 {

 //

 return "create";

 }

 /**

 * Store a newly created resource in storage.

 */

 public function store(Request $request)

 {

 //

 return "store";

 }

 /**

 * Display the specified resource.

 */

 public function show(string $id)

 {

 //

 return "show";

 }

 /**

 * Show the form for editing the specified resource.

 */

 public function edit(string $id)

 {

 //

 return "edit";

 }

 /**

 * Update the specified resource in storage.

 */

 public function update(Request $request, string $id)

 {

 //

 return "update";

 }

 /**

 * Remove the specified resource from storage.

 */

 public function destroy(string $id)

 {

 //

 return "delete";

 }

}

The return keyword was added in order to explain this better.

To check all the route lists available.

Run:

$ php artisan route:list

STEP 18: ROLE RESOURCE

We can also do the same thing for role.

$ php artisan make:controller RoleController — resource

STEP 19: ROUTES

Add the user and roles routes to the web.php file.

Route::middleware(['auth'])->group(function () {

 Route::resource('user', UserController::class);

 Route::resource('roles', RoleController::class);

});

The role resource has the following actions handled by the resource

controllers as described below.

STEP 19: CREATE ROLES

Since we have created the needed permissions, we can now create

the roles that would be attached to the permissions chosen for a

particular role. This time around, we are going to create the roles via

the interface instead of pushing them directly from the files.

Role File Organization

Below is the file organisation for roles.

The styling in these files are going to be a combination Laravel’s

default styling and Bootstrap styling. We won’t be digging deep into

the Blade Templates, but focus on what we want to achieve with it.

In order to keep this simple, we are going to use Bootstrap CDN,

<link rel=”stylesheet”

href=”https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/cs

s/bootstrap.min.css">

Add this link to the views/layouts/app.blade.php file.

views/layouts/navigation.blade.php

First off, let’s create navigation links for the roles.

 <x-dropdown-link :href="route('profile.edit')">

 {{ __('Profile') }}

 </x-dropdown-link>

 <x-dropdown-link :href="route('roles.create')">

 {{ __('Create Roles') }}

 </x-dropdown-link>

 <x-dropdown-link :href="route('roles.index')">

 {{ __('View Roles') }}

 </x-dropdown-link>
 <x-dropdown-link :href="route('profile.edit')">

 {{ __('Profile') }}

 </x-dropdown-link>

 <x-dropdown-link :href="route('roles.create')">

 {{ __('Create Roles') }}

 </x-dropdown-link>

 <x-dropdown-link :href="route('roles.index')">

 {{ __('View Roles') }}

 </x-dropdown-link>

https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/css/bootstrap.min.css
https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/css/bootstrap.min.css

Add the Create Roles and View Roles to the navigation.blade.php

file as done above. The route(‘roles.create’) translates

to /roles/create path and route(‘roles.index’) translates

to /roles/ path.

flash-message.blade.php

This is where we keep session messages after an action has been

performed.

@if ($message = Session::get('success'))

<div class="alert alert-success alert-dismissible fade show" role="alert">

 {{ $message }}

 <button type="button" class="btn-close" data-bs-dismiss="alert" aria-

label="Close"></button>

</div>

@endif

@if ($message = Session::get('error'))

<div class="alert alert-danger alert-dismissible fade show" role="alert">

 {{ $message }}

 <button type="button" class="btn-close" data-bs-dismiss="alert" aria-

label="Close"></button>

</div>

@endif

STEP 20: CREATE ROLES

Next, in the views directory, create the folders and files as seen in the

flow-chart above.

The image above is the create role page we want to create now.

Add the codes below to the create.blade.php

<x-app-layout>

 <x-slot name="header">

 <h2 class="font-semibold text-xl text-gray-800 leading-tight">

 {{ __('Roles') }}

 </h2>

 </x-slot>

 <div class="py-12">

 <div class="max-w-7xl mx-auto sm:px-6 lg:px-8 space-y-6">

 <div class="p-4 sm:p-8 bg-white shadow sm:rounded-lg">

 <div class="max-w-xl">

 @include('flash-message')

 @include('roles.partials.create-role')

 </div>

 </div>

 </div>

 </div>

</x-app-layout>

@include(‘flash-message’) means including the flash-

message.blade.php file into the create.blade.php file.

@include(‘roles.partials.create-role’) means including create-

role.blade.php from the roles/partials directory into the

create.blade.php file.

We are yet to create the create-role.blade.php file, so let’s get this done.

<section>

 <header>

 <h2 class="text-lg font-medium text-gray-900">

 {{ __('Create Role') }}

 </h2>

 </header>

 <form method="post" action="{{ route('roles.store') }}" class="mt-6

space-y-6">

 @csrf

 @method('post')

 <div class="row mb-3">

 <label for="" class="col-sm-3 col-form-label">Name</label>

 <div class="col-sm-9">

 <input type="text" class="form-control" name="name"

autocomplete="off">

 @error('name')

 {{$message}}

 @enderror

 </div>

 </div>

 <h5 class="pb-3">Permissions</h5>

 @error('permission')

 {{$message}}

 @enderror

 @foreach($permissions as $item)

 <div class="form-check mb-2">

 <input type="checkbox" value="{{$item->id}}" class="form-check-

input" name="permission[]">

 <label class="form-check-label" for="checkChecked">

 {{$item->name}}

 </label>

 </div>

 @endforeach

 <div class="mt-3">

 <button type="submit" class="px-4 py-2 bg-red-600 text-

white">SAVE</button>

 </div>

 </form>

</section>

This is a form for creating roles and attaching permissions to them.

@csrf CSRF means Cross-Site Request Forgeries. According to the

Laravel documentation, Cross-site request forgeries are a type of

malicious exploit whereby unauthorized commands are performed on

behalf of an authenticated user. Laravel automatically generates a

CSRF “token” for each active user session managed by the application.

This token is used to verify that the authenticated user is the one

actually making the requests to the application.

@error(‘name’) This means that, if there’s a validation error in the

name field, an error message should be displayed.

@foreach($permissions as $item) This is a foreach loop that loops

through a list of permissions.

In the RoleController.php, we need to update the create and the store

methods as shown below.

 public function create(): View

 {

 $permissions = Permission::all();

 return view('roles.create', compact('permissions'));

 }

Permission::all() — This is to get all the permissions stored in the

permission’s table

return view(‘roles.create’, compact(‘permissions’)) — display

the content in the roles/create.blade.php

file. compact(‘permissions’) is a way of passing the

variable $permissions to the roles/create.blade.php file.

 public function store(Request $request): RedirectResponse

 {

 $this->validate($request, [

 'name' => 'required|unique:roles,name',

 'permission' => 'required',

]);

 $role = Role::create(['name' => $request->name]);

 $role->syncPermissions($request->permission);

 return back()->with('success',$request->name.' Role created

successfully');

 }

The store() method is where the form is being processed: the

validation; and the storing of data happen here.

$request — This has the request header and body stored in it. We can

retrieve the data input from the form by calling the properties or

methods attached to the request. To get the value of a name field, we

can either retrieve the value

as $request->name or $request->input(‘name’)

$this->validate() is for validation. If the validation conditions are not

meant, it would return an error and not proceed to store the data.

Role::create() method would create a new name in the role’s table.

$role->syncPermissions($request->permission) — this enables roles

and permissions synchronization. Once you’re able to create a role, do

well to check the role_has_permissions table in the database, you

should see the role’s id and the permissions’ ids stored in there like the

image below.

STEP 21: VIEW ROLES

At the end of this step, we should have a list of role names, edit buttons

and delete buttons.

Add the codes below to the index.blade.php

<x-app-layout>

 <x-slot name="header">

 <h2 class="font-semibold text-xl text-gray-800 leading-tight">

 {{ __('Roles') }}

 </h2>

 </x-slot>

 <div class="py-12">

 <div class="max-w-7xl mx-auto sm:px-6 lg:px-8 space-y-6">

 <div class="p-4 sm:p-8 bg-white shadow sm:rounded-lg">

 <div class="max-w-xl">

 @include('flash-message')

 @include('roles.partials.read-role')

 </div>

 </div>

 </div>

 </div>

</x-app-layout>

This is similar to what we did with creating roles. Next, is to update the

roles/partials/read-role.blade.php file.

<section>

 <header>

 <h2 class="text-lg font-medium text-gray-900">

 {{ __('View Role') }}

 </h2>

 </header>

 <div class="table-responsive">

 <table class="table table-hover mb-0">

 <thead>

 <tr>

 <th class="pt-0">#</th>

 <th class="pt-0">Name</th>

 <th class="pt-0" colspan="2">Action</th>

 </tr>

 </thead>

 <tbody>

 @foreach($roles as $item)

 <tr>

 <td>{{++$i}}</td>

 <td>{{$item->name}}</td>

 <td>

 <a class="btn btn-primary"

href="{{ route('roles.edit',$item->id) }}">Edit

 </td>

 <td>

 <form action="{{route('roles.destroy', $item->id)}}"

method="post">

 @csrf

 @method('DELETE')

 <button type="submit" class="px-4 py-2 bg-red-600

text-white">Delete</button>

 </form>

 </td>

 </tr>

 @endforeach

 </tbody>

 </table>

 </div>

</section>

We have explained similar codes before, we can just skip the

explanation for them, except for the action attribute in the form tag.

route(‘roles.destroy’, $item->id) — roles.destroy corresponds to

the roles/destroy route, which points to the destroy() method in the

RoleController class. $item->id is the id of the role that would be

passed to the destroy() method for processing.

There are two actions that would be performed here: redirects to the

roles/{role}/edit page if you clicked on the edit button; while the edit

button, if clicked, gets processed in the destroy() method.

Let’s see how they were processed in the RoleController method

 public function index(Request $request): View

 {

 $roles = Role::all();

 $i = 0;

 return view('roles.index', compact('roles', 'i'));

 }

Similar to what we have done before, this is to retrieve all the roles that

have been stored in the roles’ table in the database.

 public function destroy(Role $role): RedirectResponse

 {

 $role->delete();

 return back()->with('success','Role deleted successfully');

 }

This is simply to delete a role.

Click on the buttons to test out what you have done.

STEP 22: EDIT/UPDATE ROLES

This is the interface for the edit role page. It’s quite similar to

the create role page.

Update the edit.blade.php file

<x-app-layout>

 <x-slot name="header">

 <h2 class="font-semibold text-xl text-gray-800 leading-tight">

 {{ __('Roles') }}

 </h2>

 </x-slot>

 <div class="py-12">

 <div class="max-w-7xl mx-auto sm:px-6 lg:px-8 space-y-6">

 <div class="p-4 sm:p-8 bg-white shadow sm:rounded-lg">

 <div class="max-w-xl">

 @include('flash-message')

 @include('roles.partials.edit-role')

 </div>

 </div>

 </div>

 </div>

</x-app-layout>

Update the roles/partials/edit-role.blade.php file

<section>

 <header>

 <h2 class="text-lg font-medium text-gray-900">

 {{ __('View Role') }}

 </h2>

 </header>

 <form class="forms-sample" method="post" action="{{ route('roles.update',

$role->id) }}">

 @csrf

 @method('PUT')

 <div class="row mb-3">

 <label for="exampleInputUsername2" class="col-sm-3 col-form-

label">Name</label>

 <div class="col-sm-9">

 <input type="text" value="{{$role->name}}" class="form-

control" name="name" autocomplete="off">

 @error('name')

 {{$message}}

 @enderror

 </div>

 </div>

 <h5 class="pb-3">Permissions</h5>

 @error('permission')

 {{$message}}

 @enderror

 @foreach($permissions as $item)

 <div class="form-check mb-2">

 <input type="checkbox" @if(in_array($item->id, $rolePermission))

 checked

 @endif

 value="{{$item->id}}" class="form-check-input"

name="permission[]">

 <label class="form-check-label" for="checkChecked">

 {{$item->name}}

 </label>

 </div>

 @endforeach

 <div class="mt-3">

 <button type="submit" class="px-4 py-2 bg-red-600 text-

white">Save</button>

 </div>

 </form>

</section>

Let’s update the edit() method and the update() method

public function edit($id): View

 {

 $role = Role::find($id);

 $permissions = Permission::get();

 $rolePermission =

DB::table("role_has_permissions")->where("role_has_permissions.role_id",$id)

->pluck('role_has_permissions.permission_id','role_has_permissions.permission

_id')

 ->all();

 return

view('roles.edit',compact('role','permissions','rolePermission'));

 }

Role::find($id) selects a role that corresponds to the provided id

Permission::get() selects all the permissions available.

DB::table(“role_has_permissions”) calls the

role_has_permissions table.

where(“role_has_permissions.role_id”,$id) selects the record

that has the role_id of the role_has_permissions table equal to

the provided id.

pluck(‘role_has_permissions.permission_id’,’role_has_per

missions.permission_id’) selects specific values, in this regard, it

is the permission_id of the role_has_permissions table.

pluck() vs select()

The pluck() method returns an array of permission_id, while the

select() method returns an array of objects.

 public function update(Request $request, $id): RedirectResponse

 {

 $this->validate($request, [

 'name' => 'required',

 'permission' => 'required',

]);

 $role = Role::find($id);

 $role->name = $request->name;

 $role->save();

 $role->syncPermissions($request->permission);

 return back()->with('success','Role updated successfully');

 }

This is quite similar to what we did in the store() method. It validates,

finds the corresponding role for the provided id, save it in the roles

table and synchronises the roles and the permissions tables.

